Bidirectional Inference with the Easiest-First Strategy for Tagging Sequence Data
نویسندگان
چکیده
This paper presents a bidirectional inference algorithm for sequence labeling problems such as part-of-speech tagging, named entity recognition and text chunking. The algorithm can enumerate all possible decomposition structures and find the highest probability sequence together with the corresponding decomposition structure in polynomial time. We also present an efficient decoding algorithm based on the easiest-first strategy, which gives comparably good performance to full bidirectional inference with significantly lower computational cost. Experimental results of part-of-speech tagging and text chunking show that the proposed bidirectional inference methods consistently outperform unidirectional inference methods and bidirectional MEMMs give comparable performance to that achieved by state-of-the-art learning algorithms including kernel support vector machines.
منابع مشابه
Guided Learning for Bidirectional Sequence Classification
In this paper, we propose guided learning, a new learning framework for bidirectional sequence classification. The tasks of learning the order of inference and training the local classifier are dynamically incorporated into a single Perceptron like learning algorithm. We apply this novel learning algorithm to POS tagging. It obtains an error rate of 2.67% on the standard PTB test set, which rep...
متن کاملBidirectional Sequence Classification for Part of Speech Tagging
With this paper is presented a system for Part of Speech Tagging, based on the Perceptron Algorithm. In the proposed framework, the order of the inference is not forced into a monotonic behavior (left-toright), but is learned together with the parameters of the local classifier. The system tested on the task of Italian POS Tagging at EVALITA 2009 obtained the second position, with a Tagging Acc...
متن کاملبرچسبگذاری ادات سخن زبان فارسی با استفاده از مدل شبکۀ فازی
Part of speech tagging (POS tagging) is an ongoing research in natural language processing (NLP) applications. The process of classifying words into their parts of speech and labeling them accordingly is known as part-of-speech tagging, POS-tagging, or simply tagging. Parts of speech are also known as word classes or lexical categories. The purpose of POS tagging is determining the grammatical ...
متن کاملBidirectional LSTM-CRF Models for Sequence Tagging
In this paper, we propose a variety of Long Short-Term Memory (LSTM) based models for sequence tagging. These models include LSTM networks, bidirectional LSTM (BI-LSTM) networks, LSTM with a Conditional Random Field (CRF) layer (LSTM-CRF) and bidirectional LSTM with a CRF layer (BI-LSTM-CRF). Our work is the first to apply a bidirectional LSTM CRF (denoted as BI-LSTM-CRF) model to NLP benchmark...
متن کاملA One-Stage Two-Machine Replacement Strategy Based on the Bayesian Inference Method
In this research, we consider an application of the Bayesian Inferences in machine replacement problem. The application is concerned with the time to replace two machines producing a specific product; each machine doing a special operation on the product when there are manufacturing defects because of failures. A common practice for this kind of problem is to fit a single distribution to the co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005